Tropospheric ozone: IASI vs models

G. Dufour, M. Eremenko, C. Keim, G. Foret,
J. Orphal, M. Beekmann, M. Höpfner*, G. Bergametti, and J.-M. Flaud

LISA, CNRS / Universités Paris-12 & Paris-7, Créteil, France

* IMK-ASF, FZK / KIT, Karlsruhe, Germany

AT2 follow up meeting
Mainz, June 22, 2009
Outline

1) Motivation of this study
2) First results (summer 2007 over Europe)
3) Validation using O_3 sondes
4) Comparison with models (GEMS)
5) Conclusions and outlook
Motivation of this study

- Tropospheric ozone is a key species in tropospheric chemistry
- Tropospheric ozone is also an important greenhouse gas
- Air pollution forecast is based on surface networks
- Problems: spatial coverage, vertical extension
- Advantages of IASI: spatial coverage, vertical sensitivity
First results

- Tropospheric O_3 over Europe during the heat wave in July 2007
Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI

M. Fremenko, G. Dufour, G. Foret, C. Keim, J. Orphal, M. Beekmann, G. Bergametti, and J.-M. Flaud

Received 27 May 2008; revised 17 July 2008; accepted 5 August 2008; published 23 September 2008.

[1] First partial tropospheric ozone columns (0–6 km) derived from radiances observed by the IASI instrument aboard the MetOp-A platform over Europe during summer 2007 are presented. They were retrieved using an altitude-dependent regularization method. Comparison with measurements from balloon sondes shows excellent agreement. Space-borne observations show large lower tropospheric ozone amounts over South-Eastern Europe during the heat wave period, which are also displayed by simulations with a regional chemistry-transport model CHIMERE. Citation: Fremenko, M., G. Dufour, G. Foret, C. Keim, J. Orphal, M. Beekmann, G. Bergametti, and J.-M. Flaud (2008), Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI, Geophys. Res. Lett., 35, L18805, doi:10.1029/2008GL034803.

[4] Here, we present first results of tropospheric O₃ measured with the Infrared Atmospheric Sounding Interferometer (IASI) launched in October 2006 onboard the satellite MetOp-A. The used retrieval method allows separating the tropospheric O₃ columns into two semi-independent columns and demonstrates the potential of IASI to measure the lower tropospheric O₃ variability. The IASI observations used here focus on the heat wave in July 2007 over Europe. These observations are compared to O₃ balloon sonde measurements and to predictions from the CHIMERE model for validation and interpretation.

2. The IASI Instrument

[5] The IASI instrument [Clerbaux et al., 2007] is an operational meteorological instrument. In addition to temperature and humidity profiles and cloud information, providing partial distributions of O₃ is one of the objectives.
Validation using ozone sondes

- Focus: midlatitudes

- Differences in the vertical resolution
 - Smoothed = a priori + residual

- Comparisons with ozone sondes but also intercomparisons with other scientific and operational products

- Details: Keim et al., Atm. Chem. Phys. Discuss., 2009
Preliminary validation using European ozone sondes
Validation using ozone sondes

Our product:
• small bias < errors

Operational products (v4.2)
• significant bias in the lower troposphere
• similar to scientific product for tropospheric column

NB: other scientific products (LATMOS/ULB, Clerbaux/Coheur) show similar performances than our scientific product.

details: Keim et al., Atm. Chem. Phys. Discuss., 2009
Comparison with GEMS-RAQ simulations

Use IASI tropospheric ozone observations for evaluation of GEMS-RAQ simulations, in particular for free troposphere

Specific questions to be answered:

- Are spatial structures of tropospheric ozone columns well reproduced by CTMs, consistent with IASI.
- Role of the boundary conditions?
- Relate differences in free troposphere ozone between models to differences in surface ozone
Comparison IASI – smoothed simulated 0-6km columns

09.06.2008
Attempt for explanation of observed structures

Cross-section through CHIMERE simulations (9/06/2007)

500 hPa geopotential

ozone

Importance of the middle/upper troposphere synoptical situation?
Stratosphere/troposphere exchange?
Conclusions and Outlook

- Tropospheric ozone can be retrieved from IASI with good confidence in the lower troposphere
- Validation with ozone sondes shows good agreement
- Comparison with photochemical models (GEMS)

Next steps
- Assimilation of IASI Ozone columns in CHIMERE
- Other regions of the world subject to strong pollution
- Important demonstration for future projects (e.g. GEO)
- Inverse modeling activities: NOx and isoprene emissions in Europe (GOME, SCIAMACHY, GOME-2, OMI)
Acknowledgements

Thanks to

- EUMETSAT, CNES, industry, scientists – for the IASI instrument
- CNES (IASI–TOSCA project lead by C. Clerbaux)
- INSU/CNRS and CNES for the ETHER database
- the many colleagues from the WOUDC (O₃ sondes)
- ACCENT – TROPOSAT2 (EU NoE, 2005-2008)
- the colleagues from FZK IMK-ASF for the KOPRA codes