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ABSTRACT. From the spectra of UV/vis satellite 
instruments the H2O VCD can be measured. Compared 
to other methods, the main advantages of our algorithm 
are similar sensitivity over land and oceans and for the 
whole atmospheric column. Also, it does not rely on a-
priori assumptions or additional information. From the 
measured spectra also information on cloud properties 
can be derived. Besides the absolute radiance, also the 
absorptions of O2 and O4 and the strength of the Ring 
effect can be measured. Especially from the strong and 
narrow-band O2 absorption, cloud information can be 
analysed with high precision. Here we present global 
trends of the H2O VCD and the O2 cloud cover analysed 
from GOME observations for 1996-2003. During this 
period, both quantities show a substantial increase, 
mostly consistent with the trends of the near-surface 
temperatures. The time series from GOME-I can be 
continued with observations of its successors 
SCIAMACHY and GOME-II; the total time period can 
thus be extended to up to about 25 years. 
 
1. INSTRUMENTS  
 
The GOME instrument aboard the European research 
satellite ERS-2 [1] measures sunlight reflected from the 
Earth’s atmosphere and surface covering the wavelength 
range between 240 and 790 nm with moderate spectral 
resolution (0.2-0.4nm FWHM). The satellite operates in 
a nearly polar, sun-synchronous orbit at an altitude of 
780 km with an equator crossing time of approximately 
10:30 am local time. While the satellite orbits in an 
almost north-south direction, the GOME instrument 
scans the surface of earth in the perpendicular east-west 
direction. During one scan, three individual ground 
pixels are observed, each covering an area of 320 km 
east to west by 40 km north to south. The Earth’s 
surface is entirely covered within 3 days, and poleward 
from about 70° latitude within 1 day. GOME-II is 
similar to GOME-I, but has a finer spatial resolution 
(40x80km²) and better global coverage (within one day) 
[2].  
 
2. DATA ANALYSIS 
 
2.1 H2O VCD (total column precipitable water) 
 
Several algorithms for the retrieval of the total column 
precipitable water in the red part of the spectrum from 
GOME were developed during recent years [3-13]. In 
contrast to these other methods, our water vapor 
algorithm is directly based on the results of the spectral 

analysis using Differential Optical Absorption 
Spectroscopy (DOAS [14]) and does not include 
explicit numerical modeling of the atmospheric 
radiative transfer. One specific advantage of the DOAS 
method is that it is sensitive to relative (differential) 
absorptions; thus our water vapor results are almost 
independent on instrument degradation (for details see 
[11-13]). 
The total column precipitable water is the vertically 
integrated water vapor concentration (in DOAS remote 
sensing literature it is often referred to as vertical 
column density VCD). It is calculated as follows:  
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Here SCDH2O and SCDO2 are the measured slant column 
densities (the integrated concentration along the light 
path) of water vapor and O2, respectively. The VCDO2 is 
calculated from an average atmospheric pressure 
profile. The ratio of the SCDO2 and VCDO2 defines the 
air mass factor (AMFO2) [15,16], which is used for the 
conversion of the measured SCDH2O into the desired 
total column precipitable water (VCDH2O). It is 
important to note that usually, the air mass factor is 
derived from numerical radiative transfer modeling. In 
contrast, here we derive a ‘measured’ air mass factor 
from the simultaneously measured SCDO2. The 
underlying assumption is that AMFO2 is similar to the 
AMF for water vapor (see below). Our simple approach 
has the advantage that it corrects for the effects of 
varying albedo, aerosol load and cloud cover without 
the use of additional independent information (which is 
usually not available). Although the effects of clouds on 
the measured total column precipitable water are 
basically corrected by the application of the measured 
air mass factor, due to the different altitude profiles of 
H2O and O2, potential systematic cloud effects might 
still appear [11-13]. Thus, for the trend analysis, only 
mainly cloud free observations were used (the O2 
absorption is between 80% and 95% of the maximum 
O2 absorption). The application of both, a lower and an 
upper threshold ensures that systematic changes of the 
cloud cover during the observed time period have 
almost no influence of the derived total column 
precipitable water trends. Our GOME H2O data set 
shows a very good agreement with that of SSM/I [13]. 
It should be noted that while in the meteorological 
literature the total column precipitable water is usually 
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expressed in units of g/cm², in DOAS related 
publications it is often expressed as vertical column 
density in units of molecules per cm² (1g/cm² 
corresponds to 3.3⋅1022molec/cm²).  
 
2.2 Cloud cover 
 
From the results of the DOAS fitting process, also 
information on the cloud cover can be retrieved. While 
in principle the observation of the O4 absorption is more 
sensitive to the shielding of clouds, here we derive 
information on cloud cover from the strong and narrow-
band O2 absorption. The O2 absorption can be analysed 
with higher precision and is thus better suited for trend 
studies.  
If clouds appear, they shield (part of) the atmospheric 
O2 profile below the cloud; thus a reduced O2 
absorption is a signal for an increased cloud fraction. 
However, the O2 absorption is also influenced by the 
cloud top height. Thus we refer to the O2-cloud product 
as ‘cloud cover’. It is defined as: 
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with ODmax the maximum O2 absorption for clear sky 
and ODmeasured the measured O2 absorption. The 
factor of 2.5 corrects for the fact that the smallest 
observed O2 absorption (for high dense clouds) is about 
60% of the maximum O2 absorption for clear skies.  
In addition to the O2 cloud cover we also calculate 
trends from the cloud fraction derived from broad band 
intensity measurements (from the so called PMD 
sensors). This cloud algorithm (Heidelberg Iterative 
Cloud Retrieval Utilities, HICRU) is described in detail 
in [17,18].  
 
2.3 Temperature data 
 
We compare our trends for water vapor and clouds with 
near-surface temperature data from from the Goddard 
Institute for Space Studies (GISS), see 
http://www.giss.nasa.gov/data/update/gistemp/. Details 
on this data set can be found in [19,20].  
  
3 RESULTS AND CONCLUSIONS 
 
In Fig. 1 maps of the global trends of the H2O VCD and 
the cloud cover are presented. Also shown are the trends 
of the near-surface temperatures. The best agreement 
with the temperature trends is found for the H2O trends 
over the oceans. There, also the trends for the cloud 
cover and cloud fraction show good agreement. A 
strong dependence of the H2O VCD on the near-surface 

temperature is also found for the temporal variation of 
the monthly averages from 1996-2003 [13]. 
Over the continents, often better agreement of the trends 
of the cloud cover with those of the temperatures is 
found. For H2O, even opposite trends over the 
continents appear indicating that the relationship 
between the surface-near temperatures and the 
hydrological cycle is much more complex. The 
differences between the cloud cover (from O2) and the 
HICRU cloud fraction are most probably caused by 
changes in the cloud top height, which mainly influence 
the cloud cover (but not the HICRU cloud fraction).  
Our retrievals for the H2O VCD and cloud cover can be 
directly adapted to the GOME-II instruments. The 
combined time series of GOME-I, SCIAMACHY and 
GOME-II will cover up to about 25 years. 
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Fig. 1 Global trend maps of the H2O VCD, cloud cover from O2 absorption, HICRU cloud fraction and near-surface 
temperature. The trends are expressed as relative change or Kelvin per year. 
 


