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Abstract. Limb measurements provided by the SCanning
Imaging Absorption spectrometer for Atmospheric CHartog-
raphY (SCIAMACHY) on the ENVISAT satellite allow re-
trieving stratospheric profiles of various trace gases on a
global scale, among them BrO for the first time. For limb
observations in the UV/VIS spectral region the instrument
measures scattered light with a complex distribution of light
paths: the light is measured at different tangent heights and
can be scattered or absorbed in the atmosphere or reflected by
the ground. By means of spectroscopy and radiative transfer
modelling these measurements can be inverted to retrieve the
vertical distribution of stratospheric trace gases.

The fully spherical 3-D Monte Carlo radiative transfer
model “Tracy-II” is applied in this study. The Monte Carlo
method benefits from conceptual simplicity and allows re-
alizing the concept of full spherical geometry of the atmo-
sphere and also its 3-D properties, which is important for a
realistic description of the limb geometry. Furthermore it al-
lows accounting for horizontal gradients in the distribution
of trace gases.

In this study the effect of horizontally inhomogeneous dis-
tributions of trace gases along flight/viewing direction on the
retrieval of profiles is investigated. We introduce a tomo-
graphic method to correct for this effect by combining con-
secutive limb scanning sequences and utilizing the overlap in
their measurement sensitivity regions. It is found that if hor-
izontal inhomogenity is not properly accounted for, typical
errors of 20% for NO2 and up to 50% for OClO around the
altitude of the profile peak can arise for measurements close
to the Arctic polar vortex boundary in boreal winter.
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(janis.pukite@mpch-mainz.mpg.de)

1 Introduction

While nadir observations (i.e. space borne instruments look-
ing perpendicularly to the surface of the Earth) provide
knowledge of the total column density and low vertical res-
olution information (about 10 km) about profiles for strong
absorbers only (Bhartia et al., 1996; Hoogen et al., 1999),
measurements in limb geometry (i.e. tangential view with re-
spect to the Earth surface) provide further opportunities to
extract height resolved profile information. This is achieved
by measuring backscattered light from air masses at differ-
ent tangent heights. Satellite instruments such as the Opti-
cal Spectrograph and Infrared Imager System (OSIRIS) on
the Odin satellite (Llewellyn et al., 2004), SCIAMACHY on
ENVISAT (Bovensmann et al., 1999), and also the Strato-
spheric Aerosol and Gas Experiment (SAGE III) on the Me-
teor 3 have limb observation capabilities (Rault, 2005) in the
UV/VIS spectral region.

The SCIAMACHY instrument on the ENVISAT satellite
whose measurements are applied in this study operates in a
near polar sun synchronous orbit with an inclination from
the equatorial plane of∼98.5◦. It performs one orbit in ap-
proximately 100 min with equator crossing time of 10:00 in
descending node. The satellite probes the atmosphere at the
day side of Earth in alternating sequences of nadir and limb
measurements. Limb scans in one scanning sequence are
performed with approximately 3.3 km elevation steps at the
tangent point (TP) in flight direction. The cross track swath
is 960 km at the TP and consists of up to 4 pixels for the
UV/VIS spectral range. The field of view (FOV) is 0.045◦ in
elevation and 1.8◦ in azimuth. This corresponds to approx-
imately 2.5 km in vertical direction and 110 km in horizon-
tal direction at TP, respectively. SCIAMACHY measures in
the UV-VIS-NIR spectral range from 240 to 2380 nm with a
spectral resolution of approximately 0.25 to 0.55 nm in the
UV-VIS range. More instrumental details can be found in
Bovensmann et al.(1999).
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Fig. 1. Schematic diagram of the algorithm applied for profile re-
trieval.

The limb geometry is characterized by a very slant and
thus long line of sight (LOS) through the atmosphere cross-
ing extended volumes of air masses. In existing 1-D limb re-
trieval algorithms from SCIAMACHY limb spectra (Sioris et
al., 2004; Rozanov et al., 2005; Kühl, 2005; Sinnhuber et al.,
2005; von Savigny et al., 2005; Sioris et al., 2006; Puķ̄ıte et
al., 2006; Kühl et al., 2007) the retrieval is performed for ev-
ery limb scanning sequence separately, i.e. each correspond-
ing profile is retrieved independently from the measurements
of the previous or following scanning sequences.

However, large variability in the concentrations of photo-
chemically active trace gases can occur along the long LOS:
If the model assumes a horizontally homogeneous distribu-
tion, horizontal inhomogenity in the spatial distributions of
atmospheric trace gases is introducing systematical errors
in profile retrievals from limb measurements. Approaches
to correct for this effect applying photochemical modelling
have been described recently (Natarajan et al., 2005; McLin-
den et al., 2006; Sioris et al., 2006).

The aim of this study is to demonstrate a possibility to cor-
rect for the horizontal gradient effect from the observations
themselves, applying a tomographic approach by combin-
ing consecutive limb scanning sequences that have a spatial
overlap of their sensitivity regions. For infrared spectra, a di-
rect inversion algorithm developed for the MIPAS instrument
(also flown on ENVISAT) was introduced to retrieve temper-
ature, pressure and trace gases simultaneously for all limb
scanning sequences of one orbit taking into account the hor-
izontal variability (Carlotti et al., 2001; Ridolfi et al., 2004;
Carlotti et al., 2006). Also the infrared channels of OSIRIS
are specifically designed for tomographic retrievals, although
they are mainly used for measurements of terrestrial airglow
emissions and not for limb-scattered radiation (Degenstein
et al.(2003) and references on airglow emission tomography
therein).

In this study a distance of only 3.75◦ between satellite po-
sitions (corresponding to approx. 415 km along the Earth‘s
surface) of consecutive scanning states for the northern part
of a SCIAMACHY orbit will be used to study the impact
of horizontal inhomogenity for limb measurements of scat-
tered light in the UV/VIS spectral range. For that purpose, an
overlap between the largely extended sensitivity regions of

consecutive scanning sequences is utilized, i.e. we are taking
advantage of the fact that the LOS for one particular scan-
ning sequence crosses atmospheric volumes already probed
by previous measuring sequences – under a different geome-
try.

This 2-D retrieval approach is a modification of our two
step algorithm (Kühl, 2005; Puķ̄ıte et al., 2006; Kühl et al.,
2007) where Differential Optical Absorption Spectroscopy
(DOAS) and profile acquisition by applying radiative trans-
fer modelling are performed in two separate steps. Similar
approaches have been described byHaley et al.(2004), Krecl
et al.(2006) andSioris et al.(2006).

The 3-D fully spherical Monte Carlo radiative transfer
modelling (RTM) allows the introduction of a 2-D box air
mass factor concept, varying not only in altitude but also in
latitude (for definition please see Sect.4.3). This enables the
estimation of sensitivity regions of limb measurements and
allows the simultaneous inversion of many limb scanning se-
quences, thereby providing the 2-D field of spatial distribu-
tion of trace gas concentrations. In this article we investigate
how the 2-D air mass factor concept can be applied to correct
for the horizontal gradient effect.

The retrieved profiles which result from applying either
1-D or 2-D air mass factors (AMFs) are intercompared for
selected case studies. The improvement is shown for both,
selected cases of SCIAMACHY measurements as well as for
model simulations.

2 Retrieval algorithm

An algorithm for the retrieval of NO2, BrO and OClO verti-
cal profiles from SCIAMACHY limb measurements was de-
veloped in our group (Kühl, 2005; Puķ̄ıte et al., 2006; Kühl
et al., 2007). It allows the efficient retrieval of trace gas pro-
files, and shows a good agreement of the retrieved BrO and
NO2 profiles with balloon measurements (Dorf et al., 2006;
Butz et al., 2006; Kühl et al., 2007). The retrieval of ver-
tical trace gas profiles from SCIAMACHY measured limb
spectra is done in two steps as illustrated in Fig.1. In the
first step, slant column densities (SCDs), the integrated con-
centration of the absorber along the light path, are derived
from the SCIAMACHY limb spectra by DOAS. For OClO
the fitwindow ranges from 363.5 to 391 nm and for NO2 from
420 to 450 nm. As reference spectrum we use a measurement
at a tangent height where the absorption of the considered
trace gas is small (∼36 km for OClO and∼42 km for NO2).
The small abundances of the considered absorbers which ap-
pear at the tangent height of the reference spectrum are es-
timated by a latitude dependent a-priori and their impact is
added to the retrieved SCDs.

Second, the trace gas SCDs are converted into vertical
concentration profiles applying RTM. To increase the signal-
to-noise ratio only one averaged SCD per tangent height is
applied for the inversion, which is performed either by the
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optimal estimation method (Rodgers, 2000) or a least squares
approach (Menke, 1999).

For the algorithm details please refer toPuķ̄ıte et al.(2006)
or more recently toKühl et al.(2007). Being the most rele-
vant for the issues of this article, specific details of the RTM
are given in the next two sections and also in the Appendix.

3 Radiative transfer modelling

3.1 Spatial sensitivity

The instrument measures light scattered into the LOS either
directly from the incoming solar radiation, or being scattered
previously by the atmosphere, clouds or the ground below.
The limb geometry is characterized by relatively long paths
of light along the LOS after the last scattering event, in com-
parison to the paths before the atmospheric last scattering
event when solar zenith angle (SZA) is smaller than 90◦.
Along the LOS the instrument has different sensitivities for
different locations in the atmosphere. In general, the instru-
ment exhibits a higher sensitivity to air masses closer to the
instrument since the light contributing to the measurement
integrates along the LOS (see schematic view in Fig.2). On
average, one will get gradually increasing sensitivity for the
LOS towards the instrument.

Another factor is that the asymmetry of the sensitivity re-
gion increases for rising optical depths and therefore with
decreasing tangent height (mainly due to scattering on air
molecules). Also absorption (especially ozone) and scatter-
ing by aerosols, clouds and reflection at the ground modify
the measured light intensity.

For high altitudes, where the atmosphere is optically trans-
parent, a nearly symmetrical distribution across the TP of
photons being scattered into the LOS is observed by the
model: Nearly one half of all photons contributing to the
measurement are scattered into LOS between TP and instru-
ment (near limb side), the other half from behind the TP (far
limb side).

For the retrieval at low altitudes a limiting factor is the
large probability for Rayleigh scattering i.e. the atmosphere
is optically thick. Furthermore, usually clouds are present
along the LOS at low altitudes, also preventing sensitivity
for low atmospheric layers.

Therefore at low tangent heights with an optically dense
atmosphere, more photons contribute from volumes of the
side between TP and instrument. Thus, besides the low sen-
sitivity for altitudes below 12–15 km, a larger shift of the sen-
sitivity towards the near limb side occurs. This also means
(as it will be seen later in Sect.4.3) that the measured spectra
practically contain no information about regions around the
TP for low tangent heights.

High Tangent Heights, LOS transparent atmosphere

Low Tangent Heights, high extinction along LOS

Tangent
Point

Fig. 2. Schematic view of the spatial sensitivity distribution. Con-
tributing light paths are displayed. More crossing paths means
higher sensitivity for a particular region (note that the impact of the
considered absorber on the detected slant column density increases
according to the number of light paths).

3.2 Box air mass factors

To retrieve the desired trace gas profile from the SCDs de-
rived by DOAS, the relation between these two quantities
needs to be established. The box AMFs quantify the spa-
tial sensitivity for certain space regions (or boxes) in the at-
mosphere and relate the measurement space (SCDs) to the
model space (vertical column densities (VCDs), the number
density multiplied by the vertical extension of the box). In
matrix form the relation is:

SCD = AMF × V CD (1)

where the elements ofSCD are SCDs belonging to cer-
tain observation geometries (tangent heights, instrument po-
sitions and viewing angles), the elements ofV CD are VCDs
belonging to certain boxes and the box AMFs matrixAMF
quantifies the impact of the VCDs of these boxes on the
SCDs.

In terms of the Lambert-Beer Law the SCD of an absorber
of interest at a certain viewing geometryg can be expressed
as:

SCDg = −

log(
Ig

Ig0
)

σ
(2)

whereσ is the absorption cross-section of the tracegas,Ig

is the intensity observed for the geometryg and Ig0 is the
intensity without the absorber of interest.

For a certain boxb the box AMFAMFgb describes the
impact of theV CDb within that box on the measuredSCDg

at the geometryg. Hence, in order to assess this impact one
needs to calculate derivatives of SCDs with respect to the
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V CDb. In practice this means to calculate the derivative of
the logarithm of the intensity with respect to the number den-
sity nb in the boxb or, more precisely, the absorption coeffi-
cientβb:

AMFgb =
dSCDg

dV CDb

= −
1

hbσb

d logIg

dnb

= −
1

hb

d logIg

dβb

(3)

whereσb is the absorption cross-section of the considered
trace gas in the boxb. In this study box AMFs are calculated
as derivative of the logarithm of the intensity with respect to
the absorption coefficient (last term in Eq. (3)), normalized
by the vertical extensionhb of the box.

3.3 Radiative transfer model “Tracy-II”

We apply the 3-D fully spherical Monte Carlo RTM “Tracy-
II” ( Deutschmann and Wagner, 2007; Wagner et al., 2007) to
calculate box AMFs. The largest advantage of Monte Carlo
models in limb geometry is that they properly take into ac-
count Earth´s sphericity both for single and multiple scatter-
ing (Oikarinen et al., 1999; Loughman et al., 2004). Further-
more they also provide the possibility to simulate an inho-
mogeneous atmosphere up to a high degree. The model does
not take into account refraction since it would require addi-
tional computer power but its effect was found to be negli-
gible for altitudes above 12 km (see e.g.Sioris et al., 2006).
Also aerosols and clouds are not included in this study. The
aerosol extinction is much lower compared to extinction by
Rayleigh scattering in the stratosphere. Also, due to the
slantness of limb observations, SCDs derived from measured
spectra are practically insensitive to the atmosphere below
the tangent height.

For temperature, pressure and ozone we apply a model
simulation provided byBrühl and Crutzen(1993). It should
be noted that in some individual cases the actual temperature,
pressure and ozone profile might differ considerably from the
assumed model profiles. From sensitivity studies we found
that the related errors in profile retrieval can be up to 10%.
However, the conclusions of this study are not affected by
these systematic effects.

The whole process of RTM in “Tracy-II” is separated into
two parts: backward trajectory generation and weighting.
The multiple scattering is performed until the modelled light
trajectories leave the atmosphere. The scattering angle is se-
lected according to the phase function of the respective scat-
tering event using random numbers. For the path genera-
tion scheme the interested reader is referred toMarchuk et
al. (1980) or Davis and Knyazikhin(2005). The peculiarity
of our algorithm is to separate scattering and absorption pro-
cesses. The trajectory generation does not produce any ab-
sorption event, therefore the absorption effect is determined
in the second step (weighting) for the simulated photon paths.
The advantage of this method is, that one photon ensemble
can be used for an arbitrary absorption scenario.

A more detailed description on the weighting of generated
trajectories and its relation to the calculation of box AMFs is
provided in the Appendix.

4 Two-dimensional retrieval

4.1 Horizontal gradients

Photochemically active species like BrO, NO2 and OClO can
vary significantly in space and time due to their dependence
on solar illumination, atmospheric chemistry and transport.
The large volume to which satellite limb observations are
sensitive requires the consideration of gradients in the trace
gas distributions. Since the instrument is more sensitive to
the air masses closer to it, the near limb side will have a larger
effect on the measurement results. If horizontal gradients ex-
ist, algorithms which do not account for the horizontal vari-
ation of trace gases will introduce errors in the retrieval: If
there are higher concentration values towards the instrument
(in comparison to the TP) these will be wrongly accounted
for the location where the measurement is assumed to be
taken (for the TP). Therefore a positive horizontal gradient
will - in the 1-D retrieval - lead to a concentration higher than
in reality and the peak values will tend to appear at lower al-
titude: For negative gradients the opposite is the case.

Algorithms which assume homogeneous horizontal distri-
butions do not take into account that the LOS and hence the
light, which contributes to measurement before and after be-
ing scattered into the LOS, crosses regions with concentra-
tions different to those appearing around TP. For situations
with significant horizontally inhomogeneous distribution this
will lead to increased systematic errors in the profile retrieval.

4.2 The retrieval approach

In order to account for possible gradients of the considered
trace gas along the flight/viewing direction, we propose a
two-dimensional tomography-based retrieval approach: The
individual measurements are described as a superposition not
only regarding varying altitude (as in 1-D retrievals) but also
regarding latitude parameters. I.e. SCDs derived from con-
secutive measurement sequences of one orbit are inverted si-
multaneously, including in the retrieval the information about
the horizontal sensitivity of the measurements.

With this approach a better description of the impact of
the viewing geometry on the measurement is realized: The
abundance of the considered trace gas measured along the
LOS is not assumed to occur at the TP only (as in the 1-D
retrieval) but distributed along the LOS taking into account
the sensitivity of the instrument. Thus, the 2-D approach
distinguishes between air volumes at different regions along
LOS. Therefore the retrieved profiles will agree better with
reality (unless there are errors in the algorithm).
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Fig. 3. Spatial correlation of two successive limb scanning se-
quences (right panel) together with a geolocation map of the SCIA-
MACHY limb scanning sequences (left panel, taken from SOST
webpage:atmos.caf.dlr.de/projects/scops/). If the distance is small
enough for the measurement regions to partially overlap, as for
scanning sequences indicated with red circle (left panel), the mea-
surement of the same air masses is made from different instrument
positions.

A precondition for an improvement with respect to the 1-D
algorithm is that the change of the atmospheric trace gas con-
centrations (particularly because of SZA change and trans-
port of air) in time is negligible. The SZA change in time
(in January) for consecutive scanning sequence in the North
is from ∼0.025◦ (most northern state) to∼0.07◦ (around
60◦ N) during the time (∼1 min) which is necessary to cross
the distance between two consecutive scanning sequences
(Fig. 3, left panel indicated with red circle). This difference
in the SZA does not result in significant profile changes of
the considered absorbers.

Also the spatial distance between the consecutive scanning
sequences should be small enough so that they overlap in
some extent (see Fig.3) and be at least less than the sensi-
tivity region of one limb measurement. Both criteria are ful-
filled for the northern part of SCIAMACHY orbits, where the
first 3 or 4 limb scanning sequences (indicated for an exam-
ple in the right panel of Fig.3) are performed without nadir
observations in between.

The SZA change per minute during a SCIAMACHY orbit
increases until the equator is reached, with its maximum of
∼0.25◦ (in January) and then decreases again southwards.

4.3 Two-dimensional box air mass factors

The light path lengths in a box depend on the form of the box
only. Hence Eq. (3) is valid for any dimension of the boxb,
it can be either 1-D, 2-D or even 3-D.

Figure 4 shows 1-D box AMFs calculated by the RTM
Tracy-II as a function of the tangent height. The box AMFs
depicted in Fig.4 demonstrate only the sensitivity to ver-
tically resolved but horizontally homogeneous atmospheric
layers. In this case, the measured SCD at a certain geometry
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Fig. 4. One dimensional box AMFs for 435 nm plotted for 3 km
thick boxes as function of the tangent height. The illustration is for
the 3rd scanning sequence (solar zenith angle: 84◦; solar azimuth
angle:−43◦ at the tangent point) in the descending part from North
of an orbit of SCIAMACHY in the middle of January (orbit 15 122
on 20 January 2005). The peak value usually is located at the tan-
gent height equal to the altitude of the “box” simulated.

g is defined as:

SCDg = h
∑
balt

AMFg,balt
nalt (4)

whereAMFg,balt
andnalt are box AMFs resolved in alti-

tudealt for the geometryg and number density, respectively.
h is the vertical extension used for the boxes.

In our 2-D retrieval the box AMFs vary not only in altitude
but also in latitude. Here theSCDg is described as a sum of
products of both, in altitude and latitudelat resolved box
AMFs and number densities:

SCDg = h
∑

balt,lat

AMFg,balt,lat
nalt,lat (5)

Due to the additional latitudinal dimension, the box AMFs
calculation time of “Tracy-II” increases by a factor of 1.5.

The 2-D box AMFs describe the spatial character of the
sensitivity of limb measurements in a more appropriate way,
see Fig.5. The enhanced sensitivity for regions crossed by
the LOS can be nicely seen; the higher sensitivity for the
instrument side can be realized, too. The spatial distribu-
tion of 2-D box AMFs for different tangent heights of the
instrument’s LOS is depicted in Fig.6 for a pure Rayleigh
atmosphere, i.e. without clouds and aerosols. The latitudinal
borders of the boxes are selected as midpoints between the
tangent points (TP) of the scanning sequences of the instru-
ment.

Due to increased Rayleigh scattering at low tangent
heights of the LOS (see the example given for a tangent
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Fig. 5. Comparison between 1-D and 2-D box air mass factors. Values calculated for 435 nm are plotted for tangent height at 21 km.
Illustrations are for the 3rd scanning sequence (solar zenith angle: 84◦; solar azimuth angle:−43◦ at the tangent point) in the descending
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distinguishing between air masses measured not only in altitude but also in latitude. 1◦ of latitude corresponds to∼119 –160 km depending
on line of sight azimuth angle. Line of sight, normal of the Earth, tangent point, and direction of Sun light are also shown in the figure.

height of 9 km in the Fig.6) the contribution of light to the
measurement is small for areas close to the TP (for the given
example the TP is at∼63◦ N). Therefore the sensitivity for
low altitudes (<15 km) around the TP is low. The sensitivity
increases with tangent height. Since the box AMFs depend
on the slantness of the light paths, large values and thus high
sensitivity for high tangent heights is found around the TP.
The fact that the light after the last scattering event prop-
agates towards the instrument along a very slant trajectory
leads to high values of 2-D box AMFs along the LOS.

Figure6 illustrates also the wavelength dependency of the
box AMFs: Due to a larger probability of Rayleigh scatter-
ing for smaller wavelengths the box AMFs at 380 nm are de-
creased with respect to the box AMFs at 435 nm.

5 Results

As an example we show retrievals of NO2 and OClO number
density profiles for selected orbits in January 2005. The re-
trieval is performed applying either 1-D or 2-D box AMFs in
order to investigate if the 2-D box AMF concept is changing
the profile retrieval to the direction expected by the consider-
ations in Sect.4.1: This is awaited because of the improved
description of the reality in the forward model for situations

where the distribution of the considered trace gas along the
LOS is inhomogeneous. The left panel in Fig.7 shows the
geolocation of the tangent points corresponding to the limb
measurement sequences of orbit 15 122 on 20 January 2005.
The right panel gives an illustration of the potential vorticity
at the 475 K level (approx. 19 km altitude) above the North
Pole for the same day. The position of the considered SCIA-
MACHY observations in the northern part of the selected or-
bit is indicated with a red square in both maps (approx. 60◦

to 70◦ N).

The interesting limb scanning sequences are located at the
boundary of the polar vortex. Here, due to denoxification
inside the polar vortex, a strong negative gradient along the
LOS (from the TP towards instrument) is expected for NO2.
Vice versa, for OClO a positive gradient is expected due to
strong chlorine activation inside the polar vortex in the ex-
traordinary cold January 2005 (regarding stratospheric tem-
peratures). The retrieved NO2 and OClO number densities
for the northern part of the selected orbit are plotted as a
function of latitude and altitude, both for 1-D and 2-D ap-
proach, in Figs.8 and9 (left and right panels, respectively).
It can be seen very clearly that the NO2 number density is
decreasing monotonically from 60◦ to 70◦ N (in particular
at the peak altitude of approx. 28 km). For OClO, a rapid
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Fig. 6. 2-D AMFs for different tangent heights as modelled by the RTM model Tracy-II for 435 nm (NO2) on the left panel and 380 nm
(OClO) on the right panel. Values are plotted for the example of the 3rd scanning sequence in the descending part from North of an orbit of
SCIAMACHY in the middle of January (orbit 15 122 on 20 January 2005). The normal from tangent point to the Earth surface is indicated
with a white line.
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Fig. 7. Left panel shows geolocations of the tangent points for the limb scanning sequences of the orbit 15 122 on 20 January 2005. The red
box indicates the states for which the retrieval is shown in the line plots in Fig.8. Potential vorticity for the same day, 12:00 UT is displayed
in the right panel (ECMWF, 2000).

increase is observed from 65◦ to 70◦ N for altitudes between
15 and 18 km. Comparing the retrieved profiles for the 1-
D and 2-D approach (dashed lines in Fig.8 and lower panel
in Fig. 9), significant differences appear. For the NO2 re-
trieval (left panels of Figs.8 and9) an increase of the values
in the 2-D approach is visible for altitudes from 21 to 30 km
and latitude regions of 61.5–64.5◦ and 64.5–67.5◦ (dashed
red and green lines, respectively). The typical difference be-
tween both retrievals is about 20%.

As can be seen from Fig.6, the LOS for the 3rd scanning
sequence from North (as indicated by the red box in the left
panel of Fig.7 with TP located at∼63◦ N) crosses also re-
gions of 64.5–67.5◦ N for a wide altitude range (∼20 km).
In the 1-D retrieval, where a homogeneous distribution is as-
sumed, the SCD obtained in the first step of the retrieval (see
Sect. 2) is interpreted only as a superposition of the trace
gas abundances at different altitude levels. Therefore, also
horizontal gradients will be wrongly accounted as vertical
number density changes. In other words, a decreased mea-
surement value of SCD due to lower NO2 values towards
the instrument will incorrectly be interpreted as a decrease in
concentration values retrieved and assumed for the TP. How-
ever in the 2-D retrieval approach, the model uses knowl-
edge from the previous state assigning a part of the measured
SCDs to lower concentrations more to the North.

For the same example of consecutive limb scanning se-
quences in the northern part of the orbit 15 122 we applied
the 2-D approach on the retrieval of OClO profiles (see right
panels in the Figs.8 and9). Although the relative retrieval er-
rors for OClO are larger (in comparison with NO2 retrieval),
systematically lower concentrations for the 2-D retrieval of
OClO can be observed for latitudes below∼67.5◦ N (or for
regions 64.5–67.5◦ N (green line) and 61.5–64.5◦ N (red line)
corresponding to the second and third scanning sequence).
Hence the 2-D approach results in a more rapid decrease of
OClO when leaving polar vortex, which is in better agree-
ment with the expectations. Similarly, the strongest gradient
of NO2 in orbit 15 122 (see Figs.8 and9) occurs when cross-
ing the border of Arctic polar vortex (compare Fig.7, right
panel). Also the rapid decrease of OClO is observed at the
location of this barrier for horizontal transport (see Figs.8
and9). Other examples where strong gradients of NO2 oc-
cur, are depicted in Fig.10 for orbits 14 979 on 10 January
2005 (panel a), 15 080 on 17 January 2005 (panel b), 15 088
on 18 January 2005 (panel c) and 15 149 on 22 January 2005
(panel d).

The largest differences between the 1-D and the 2-D ap-
proaches occur if the gradient is strong and appears for an
extended altitude interval, see e.g. results for orbit 14 979
(latitude regions corresponding to scanning sequences 3 and
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Fig. 10. Comparison between retrieved profiles of NO2 made separately for every scanning sequence i.e. applying 1-D box air mass factors
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15 088 on 18 January 2005 (panelc) and 15 149 on 22 January 2005 (paneld ).

4), results for orbits 15 080 and 15 149 (latitude regions cor-
responding to scanning sequences 2 and 3 and also 3 and 4),
and the results for orbit 15 088 (scanning sequences 2 and
3), shown in Fig.10. It can be seen that the disagreement be-
tween the 1-D and 2-D retrievals increases for lower altitudes
if a strong gradient exists. Also for OClO large differences
between 1-D and 2-D retrievals can be found as illustrated
in Fig. 11. For scanning sequences crossing the polar vortex
boundary a decrease in the OClO concentrations of approxi-
mately 50% is found.

6 Verification

In order to verify that the profiles derived by the 2-D ap-
proach are indeed resulting from an improved description of
the measurement sensitivity regions, we also selected a case
(orbit 15 146 on 22 January 2005) where practically no gra-
dient for NO2 is observed for the most northern part of orbit,
see Fig.12. Here the retrieval applying either 1-D or 2-D
box AMFs results in very similar profiles indicating that the
change in the cases above is not an artefact.

Furthermore, we also tested our 1-D and 2-D retrievals us-
ing modelled trace gas fields. For that purpose we chose
simple scenarios in which the gradient (either negative or
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positive towards the instrument) are prescribed by well
known number density values. We then applied “Tracy-II”
to simulate the corresponding SCDs for these stratospheric
trace gas fields, adopting the geometry of SCIAMACHY
orbit 15 122. For the first study (the negative gradient to-
wards the instrument) we prescribed a trace gas distribution
as depicted in Fig.13 (upper panel, left). A stepwise gradi-
ent on a five times finer latitudinal grid than the measure-
ment grid of SCIAMACHY was selected and a Gaussian
shape profile with peak at 28.5 km andσ -parameter of 4 km
(FWHM ∼9.4 km) was assumed. The gradient was from
3×108 molec/cm3 at 71◦ N to 12×108 molec/cm3 at 61.5◦ N
at the peak of the profile. In the top panel on the right side of
Fig. 13, a latitudinal average on the SCIAMACHY retrieval
grid used in this study is provided.

We inverted the SCDs either by 1-D or 2-D approach. The
resulting profiles are shown in the middle panel of Fig.13
for 1-D case on the left and for 2-D case on the right side.
The difference to the original trace gas distribution averaged
on the retrieval grid used for SCIAMACHY measurements
is plotted for both cases in the bottom panel. For the 2-D
retrieval a much better agreement can be realized for latitudes
below∼68◦ N i.e. for the latitudinal regions corresponding
to the 2nd, 3rd and 4th scanning sequence of SCIAMACHY.
The improvement for the 2-D retrieval is up to 10% for values
at the peak of the profile and it increases for altitudes below
the peak.

Additionally, we modelled SCDs for a trace gas distri-
bution with positive gradient towards the instrument (see
Fig. 14). Also for this case, a stepwise gradient on a five

www.atmos-chem-phys.net/8/3045/2008/ Atmos. Chem. Phys., 8, 3045–3060, 2008
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times finer latitudinal grid than the measurement grid of
SCIAMACHY and a profile with Gaussian shape is used.
The peak of the profile is at 19.5 km and theσ -parameter
equals again 4 km. The gradient is from 3.5×107 molec/cm3

at 71◦ N to zero at 61.5◦ N at the peak of the profile. In the
top panel on the right side in Fig.13 a latitudinal average
on the SCIAMACHY retrieval grid as used in this study is
provided.

The profiles, resulting either by 1-D or 2-D retrieval
method are shown in the middle panel of Fig.13 on the
left and on the right side, respectively. The difference be-
tween the original trace gas distribution averaged on the re-
trieval grid used for SCIAMACHY measurements is plot-
ted for both cases in the bottom panel. Also in this case,
a much better agreement for the 2-D retrieval can be realized
for the latitudinal regions corresponding to 2nd, 3rd and 4th
scanning sequence of SCIAMACHY. For the 1-D approach
a downward shift of the retrieved profile peak and overesti-
mated values of up to 100% are observed. In contrast, the 2-
D approach provides values being much closer to the original
distribution used for the study and averaged on the retrieval
grid.

To conclude, these verification studies showed that, by uti-
lizing the overlap of consecutive limb scanning sequences,
the 2-D approach allows an improved inversion of the related
measurements. It has been demonstrated that this approach
is correcting for the effect of horizontal gradients in limb re-
trievals.

7 Conclusions

SCIAMACHY provides scattered light measurements in
limb geometry from which atmospheric trace gas profiles can
be retrieved successfully. The two step approach (DOAS,
RTM combined by optimal estimation) allows to investigate
the effects of spectroscopy and radiative transfer on profiles
separately. The assumption of horizontally homogeneous
trace gas distributions can lead to errors in the retrieved pro-
files, in particular at locations where strong horizontal gra-
dients occur e.g. at the edge of polar vortex. The inversion
of SCDs from several consecutive SCIAMACHY limb scan-
ning sequences simultaneously in one inversion constraint is
performed by applying box AMFs resolved both in altitude
and latitude. This approach allows taking into account the
spatial correlation between these measurements and thereby
improving the profile retrieval. This tomographic application
for SCIAMACHY UV/VIS measurements is demonstrated
for the first time. It allows the correction for cases with large
horizontal gradients in flight/viewing direction: concentra-
tions and profile shape are corrected in the true direction for
both types of gradients (positive and negative). Such gra-
dients can occur for several stratospheric trace gases due to
their dependence on meteorological conditions, transport, so-
lar illumination and photochemistry.

For situations with practically no horizontal gradients, no
difference between the 1-D and the 2-D retrieval is observed.
A better agreement of the 2-D approach with the reality was
demonstrated for the verification studies, in which SCDs
were modelled for the simple scenarios with either a nega-
tive or a positive gradient towards the instrument.

For the first limb scanning sequence of a SCIAMACHY
orbit, where no overlap with preceding measurements exists,
strong gradients in photochemically active species like NO2
or OClO can occur, especially for large SZA. A method to
correct for this diurnal effect has been described byMcLin-
den et al.(2006). Currently, we are working on an algorithm
to combine this photochemical modelling with the 2-D ap-
proach presented in the article at hand. By combination of
this 2-D approach and photochemical modelling, a more de-
tailed correction for horizontal gradients will be achieved in
a future modification of the retrieval algorithm.

For other parts of the SCIAMACHY orbit, where nadir
scanning sequences are performed between limb scanning
sequences, the presented algorithm can not be applied in its
current form. It is giving only unconvincing improvement
because of a poor overlap of the sensitivity areas of consec-
utive limb scanning sequences. This requires further stud-
ies and improvements in the algorithm. Also, in additional
studies the effect of possible gradients across flight/viewing
direction should be investigated because the 2-D approach
presented here did not account for it.

A small distance between limb scanning sequences im-
proves the horizontal resolution of the measurements; there-
fore an instrument using only UV/vis limb measurements
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Fig. 13. Upper panel left: Sample verification profiles with negative gradient towards instrument applied for simulation of SCDs as function
of latitude. Upper panel right: The same but averaged on SCIAMACHY retrieval grid. Middle panel: Retrieved profiles from simulated
SCDs for 1-D case (left) and 2-D case (right). The difference between the original verification profile averaged on SCIAMACHY retrieval
grid and the simulated retrievals is shown in the bottom panel for 1-D case (left) and 2-D case (right).
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Fig. A1. Example of a backward trajectoryi , the dotted lines lead
to the sun.rD is the position of the detector.i1..i7 are scatter events
of the trajectory. They are assigned with basic weightsw0

i1..w0
i7

quantifying the probability for light to reach the scatter event with-
out extinction by scattering and beeing scattered into the trajectory.

i.e. without performing nadir observations in between two
limb scanning sequences would be an advantage and further
improve the accuracy of the retrieved profiles.

Appendix A

Calculation of box air mass factors by RTM “Tracy-II”

For this study the backward Monte Carlo RTM “Tracy-II”
calculates box AMFs according to Eq. (3) given in Sect.3.2.
We now want to describe (1) how the intensity (as measured
at the instrument position) is estimated in our model and (2)
how the derivative of the logarithm of the intensity is calcu-
lated, leading to the box AMFs.

In the following a path which light would take if it is emit-
ted from the detector until it leaves the atmosphere is named a
“backward trajectory” or just “trajectory”. A group of back-
ward trajectories calculated for the same RTM configuration
is called “backward trajectory ensemble”. Each trajectory
of a backward trajectory ensemble is generated obeying the
distribution densities of (1) the free path length, (2) the type
of the scatter object and (3) the scatter angle (path genera-
tion). In a second step (weighting), each scatter event on a
trajectory is assigned with a weight which is a measure of the
probability that sun light reaches the detector.

A1 Intensity

Intensity is defined as sun normalized radiance, thus the ratio
of the radiance observed by the instrument and the solar irra-
diance. Initially, it is calculated from the backward trajectory
ensemble simulated by “Tracy-II” without considering any

absorption (compare Sect.3.3). Therefore each scatter event
j on a trajectoryi is characterized by a basic weight:

w0
ij =

P(µij , r ij )

4π
exp

−

�∫
r ij

εs(r)dr

 (A1)

Here,P is the scattering phase function of the scatter event
(ij) at positionr ij with respect to the scatter angleµij . In the
second factor� denotes the sun andεs(r) is the total scatter
coefficient at positionr. Both factors together multiplied by
the solar disc solid angle may be interpreted as the probabil-
ity, that sun light reaches the scatter eventj and the photons
are scattered into the trajectoryi.

For a backward trajectory ensemble withN trajectories the
intensity without absorption is calculated by averaging the
intensity estimatesIi , where eachIi is defined as the sum
of the contributions of all scatter eventsj belonging to the
backward trajectoryi:

I = lim
N→∞

1

N

N∑
i=1

mi∑
j=1

w0
ij (A2)

wheremi is the number of scatter events for theith tra-
jectory (see Fig.A1). In theory the equal sign is valid for a
large number of photons, in practiceN can be finite to have
a certain degree of accuracy.

In order to consider absorption the basic weightsw0
ij are

modified as follows:

wij = w0
ij · exp

−

�∫
D ij

βtotal(r)dr

 · Aij (A3)

with absorption coefficientβtotal of all absorbers at position
r:

βtotal(r) =

tracegases∑
t

nt (r)σt (r) =

tracegases∑
t

βt (r) (A4)

The basic weightw0
ij is reduced by a Lambert-Beer-like

factor andAij which is the product of all aerosol single scat-
tering albedos and ground albedos on the backward trajec-
tory i from the detector until the scatter eventj . In case of
Rayleigh scattering events the albedo is set to one. Equa-
tion (A3) may be interpreted as a measure of the probability
of light to reach the detectorD through the trajectoryi by
scatter eventj , considering absorption on condition that the
whole backward trajectory ensemble is representative for a
physical photon ensemble emerging from the detector. For
a sampled backward trajectory this is always true, because
every backward trajectory was generated obeying the proba-
bility distributions of the free path length, the scatter object
and the angle of scattering. For details on the theory behind
the method the interested reader is referred toPostylyakov
(2004) or Marchuk et al.(1980).
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Finally, the formula for the intensity with absorptionIg is
the same as Eq. (A2) but withwij instead ofw0

ij :

Ig = lim
N→∞

1

N

N∑
i=1

mi∑
j=1

wij (A5)

Please note that “Tracy-II” calculates Sun normalized ra-
diance. Because in terms of Eq. (2) only a ratio of intensities
is relevant, we also refer toIg for reasons of consistency here.

A2 Logarithmic derivatives of the intensity and box air
mass factors

For the calculation of the derivative of logarithm of the inten-
sity and later box AMFs one has to investigate the Lambert-
Beer-like term in Eq. (A3) only, because all other factors do
not depend on the tracegas profile. The derivative of this ex-
pression with respect to the absorption coefficientβtb of one
tracegast in the boxb is:

d

dβtb

wij = −lbijwij (A6)

wherelbij is the light path length associated with trajectory
i and the scatter eventj in the boxb. Taking this into ac-
count and applying the chain rule, the logarithmic derivative
of the intensity in Eq. (A5) with respect to the absorption co-
efficientβtb of one tracegast (that of the interest) in boxb
becomes:

d

dβtb

log(Ig) = −

∑N
i=1

∑mi

j=1 lbijwij∑N
i=1

∑mi

j=1 wij

= −〈Lb〉 (A7)

where〈Lb〉 is the weighted average of trajectory lengths
through the box with their weighting factors. Please note that
in Eq. (A7) also trajectories not crossing the box are consid-
ered: Their length through the box is zero but their weight
still contributes to the sum in the denominator.

It turns out, that Eq. (A7) is equal for any trace gas consid-
ered in a certain atmospheric scenario, because the derivative
in Eq. (A6) is the same for all absorbers, i.e. it depends on
(not necessarily small) optical depth only.

Inserting Eq. (A7) in Eq. (3), the elementsAMFgb of the
AMF matrix in Eq.1 with respect to the boxb and the geom-
etryg finally are:

AMFgb =
〈Lb〉

hb

(A8)
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